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Chapter 1

An eBook on Cardiology

1. Introduction

1.1. Healthcare from Industrial to Information Revolution

 In the pre-industrial era healthcare for the most part was delivered in patient’s homes 
or small clinics. It was infeasible for most patients to travel outside the small proximity of 
their town given the logistical constraints of traveling, even distances that today would be 
considered insignificant. The industrial revolution brought larger roads, train lines and mass 
production of automobiles, which made travel much easier. As a result, academic centers and 
healthcare organizations started to sprout and grow throughout the United States. From the 
industrial revolution came an age of scientific discovery and technical advances that would 
shape current healthcare. The majority of today’s population was not alive during the first 
industrial revolution, but we are living through another time period just as profound to human 
experience and healthcare, the information age (1975-2020) [1,2].

 The information age started in the 1970’s and is defined by rise of information technology 
(transistor, personal computer, internet, etc). Healthcare was initially behind most industries 
in utilizing information technology. However, in the early 2000’s with the publication of 
landmark reports like the Institute of Medicine’s (now the National Academy of Medicine) 
“To Err is Human” and “Crossing the Quality Chasm” the US healthcare system was exposed 
for being too expensive, having too many medical errors,  and being too inaccessible. Major 
quality improvements were needed. 
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 One focus was improved utilization of information technology. Law makers passed 
several major health policy reforms. For example, the Health Information Technology for 
Economic and Clinical Health (HITECH) Act of 2009, was passed into law and created 
incentives for healthcare organization to adopt electronic health records (EHRs). The result 
has been major adoption of HIT in the past decade. In 2008, only 9.4% of hospitals in the 
US had a basic electronic health system (EHR), but by 2015 adoption had increased to 94% 
[3]. Data from clinical documentation, lab and image tests, therapeutic orders, claims, and 
wearable devices - to name a few of many examples - are being digitalized and stored. This 
has led to an unimaginable wealth of available health data.  

 For example, Datasets used for analytics can often contain a zeta bye (10^21 bytes) 
of data, and have led to the term “big data”. Clinical researchers who used to rely on small-
specialized datasets maintained in their healthcare organization, or disease registries in 
departments of health, or who would spend months searching through paper charts by hand to 
create their own dataset, now have access to a vast amount of data with a few clicks of a mouse 
[4].  

 One result of increased data has been the increased efficiency of clinical research. Fig-
ure 1 shows that from 2000 to 2019 the number of registered clinical trials increased from 
thousands to a quarter of a million annually (clinical trials did not have to be registered until 
2005 but most of the growth has occurred after this date) [5]. Medical knowledge and evi-
dence-based guidelines are shaped from clinical research. Consequently, as HIT has advanced, 
medical knowledge has exponentially increased. The doubling rate of all medical literature 
was estimated to be 50 years in 1950, 7 years in 1980, 3.5 years in 2010, and 73 days in 2020 
[6]. This means for Cardiologists by the time they get through medical school, residency and 
fellowship training all the knowledge that existed when they started their educational journey 
will be long out of date, but even more disturbing so, will the knowledge they gained in their 
first year of fellowship. Paradoxically, keeping up-to-date and practicing evidence-based med-
icine has never been more challenging, despite the increased access to this knowledge through 
HIT. 

Figure 1: modified from ClinicalTrials.gov
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 As you will learn in this chapter, the field of informatics has been on the forefront 
of addressing the challenges to achieve the full potential of healthcare’s evolution in the 
information age. Therefore, investment in informatics education for Cardiologists in practice 
and training will be essential for continued innovation and improved healthcare delivery in the 
field [7,8].

1.2. A new age is upon us with the rise of artificial intelligence and machine learning

 To make use of the vast data created from the information age, technologies in data 
mining and analytics were required. One such technology has been natural language processing 
(NLP), a sub discipline of artificial intelligence (AI), which is a powerful tool for extracting 
unstructured text data and transforming it into more structured data elements. NLP has been 
essential in utilizing vast stores of unstructured data that otherwise would be functionally 
useless. Machine learning (ML) has also been crucial in analyzing data. Conversely, data 
has also been crucial for advancing ML, which requires large amounts of data to train its 
algorithms. A perfect storm of technological advances such as increasing computational power, 
development of cloud computing, the rise of the graphical processing unit (GPU), along with 
big data has ushered in the age of ML and AI. 

 Many believe the age of AI and ML will have a larger impact on humanity and possibly 
healthcare than the industrial and information ages. How much is hype versus reality? It is 
hard to know but AI is already changing our day-to-day life and is likely here to stay. In 
healthcare ML and AI have shown impressive results in imaging-based technology and with 
rapid advances on a yearly basis, its expected to have an even broader impact in the near 
future. Consequently, healthcare organizations are already starting to invest in ML and AI, and 
high impact journals are increasingly publishing ML studies. 

1.3. Cardiologist need training in informatics and data science 

 To realize the full potential of our new data landscape will take training the current and 
next generation of Cardiologists in technical fields like informatics and data science. Otherwise, 
the chasm between the world of clinicians and technical experts will grow, and the possibility 
for improved patient care diminished. 

 The goal of this chapter is to provide an introduction into the important topics such as 
big data, artificial intelligence, and knowledge engineering through the lens of informatics. 
Although the examples used will largely be in the field of Cardiology, most of the information 
is useful for practitioners in other disciplines as well. Furthermore, the information provided 
in the chapter is not meant to be a comprehensive overview but instead a primer on these 
topics.
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2. Cardiology Informatics and Information Hierarchy

2.1. Introduction to Health Informatics

 The American Medical Informatics Association (AMIA), one of the largest informatics 
organizations, defines informatics as “The science of how to use data, information, and 
knowledge to improve human health and the delivery of care services [9].” A broader definition 
of health informatics is:

 “A scientific discipline that deals with the collection, storage, retrieval, communication 
and optimal use of health-related data, information and knowledge. The discipline utilizes the 
methods and technologies of the information sciences for the purpose of problem solving, 
decision making and assuring highest quality health care in all basic and applied areas of the 
biomedical sciences [10].”

2.2. Informatics and HIT are synonymous?

 Informatics and HIT are terms that are often used interchangeably. However, it is 
important to understand their distinction. HIT is focused on technology and the management 
of technological systems. Informatics is focused on the systems of information and the data, 
information, and knowledge within them.

 The focus on health informatics should always be improving and advancing patient 
care, and not first on the information technology. 

2.3. Informatician in healthcare

 Informaticians are informatics experts who often have formal training and postgraduate 
degrees in the field of informatics or related disciplines (see below). Informaticians have a broad 
range of skills and job roles within a healthcare organization. This reflects the many disciplines 
that contribute to the field. Clinicians who are informaticians typically have leadership roles. For 
example, one leadership position is the Chief Medical Information Officer (CMIO) who make 
high level decisions regarding HIT infrastructure. Cardiologists informaticians that support 
their practice are increasing and have a number of important roles which can include specialty 
specific EHR changes, development of clinical decision support (CDS) tools, and development 
of analytic dashboards to name a few of many. Another role of Cardiology informatician are 
those who primarily do research. They are often interested in mining, creating, or maintaining 
databases and performing data analytics for research purposes. Clinicians who are informatics 
specialist often lead teams with various technical expertise such as IT specialist, computer 
scientists, data scientist and system engineers (see Figure 2).
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Figure 2: Modified from the American Medical Association. Informatics is a field with foundations in several other 
scientific disciplines

2.4. Information Hierarchy

  The concepts of data, information, knowledge and wisdom are foundations of informatics. 
Although these concepts are regular in everyday lexicon, they are often difficult to define 
and used interchangeably. Defining these terms is important because they create a conceptual 
information hierarchy, which often is helpful in creating methods to approach informatics 
projects. Moreover, this basic framework is built with more detailed approaches to applied 
informatics, such as Dr. Lehmann of John’s Hopkins Information Stack (see Informatics in 
practice below) (Figure 3). 

Figure 3: Information Hierarchy 

2.5. Data 

 Data are symbols that represent observations, but without larger meaning. For example, 
the number 110 put into a database has no intrinsic meaning. It could mean systolic blood 
pressure or heart rate, or the age is 110. Data reduced to its indivisible element is datum. This 
is what databases store and computers process. 

 The digitalization of patient data has created an exponential increase in its volume. 
Understanding the characteristics of the data you are working with is key to data mining and 
analysis. One important distinction is data structure. Structured data is highly organized often 
in a relational database and often where the data has both an underlying known architecture 
and metadata (data about data) is present. Contrarily, an example of unstructured data is often 
text written in clinical notes, which does not have a defined organization.
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3. Big Data

 What is Big Data and does this mean there is little data?  The debate over defining big 
data continues, but big data is typically characterized by five V’s [11]. 

Volume: There is n’t an exact volume of data that creates a line between small-or-medium size 
data and big. However, the volume in big data is usually considered more than could be stored 
on a single server, and often requires hundreds of servers for storage. 

Variety: The heterogeneity of data types, sources, function and fidelity are all key characteristics 
of big data. 

Velocity: The rate of data querying (mining) and processing for functional purposes. 

Value: The usefulness of the data for its intended purpose 

Veracity: Veracity is basically the data quality. Is the data accurately capturing what it supposed 
to? 

3.1. Data warehouse

 Healthcare organizations are increasingly developing clinical data warehouses (CDWS) 
to store various health data with the hope of it being accessible for analytics and research. Older 
legacy EHR systems typically were de-centralized, meaning multiple different applications 
such as computer physician order entry (CPOE) and clinical documentation could run on 
different applications. This made older EHR systems notoriously slow, prone to system errors 
(often causing frequent downtimes), and difficult to extract data to a centralized database. The 
evolution of centralized EHRs that run on a cloud framework are now becoming the standard 
in most organizations. Epic is the most common EHR now in academic organizations. 

 CDWS typically use structured data from places like the EHR, digital imaging and 
communication in medicine (DICOM), and administrative databases. However, with the 
development of NLP, various unstructured data are transformed to structured data in the CDWS. 
Typically, the step before entering the data in CDWS is a staging database where the data from 
multiple sources is cleaned and mapped into a Meta database. The data from CDWS is often 
then used to support specialty specific databases called data marts that are often formed to 
support research purposes. In the case below is the development of a Cardiology Heart Failure 
Data Mart (Figure 4). The data in these specialty data marts has typically gone through a 
validation process, which helps reassure researchers of its quality. They can also be linked to 
larger disease specific registries. In the case of heart failure there is active work in linking these 
institutional data marts to large national registries [12,13].
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Figure 4: CDWS and Cardiology Heart Failure Data Mart for Analytics

3.2. Information

3.3. Defining and measuring information

 The most basic way of describing information is data + meaning = information. However, 
this is basic conceptual approach to information. In reality, quantifying information can be 
much more complicated. A simple example is trying to calculate information over a simple 
information channel, which be calculated by the equation 1.

H=n [(log)] _2 S

 In this equation H is Shannon’s entropy or information measured in bits, n is the number 
of symbols (data), and S is the number of possible symbols. 

3.4. Information Systems

 In section data Figure 4 showed how data is can be organized within a healthcare institution. 
The architecture of a health information systems is focused on the systems transmitting patient 
health information. This can be very complex. 

3.5. Interoperability

 The concept of interoperability (see definition below) helps define how various system 
elements communicate information and interface together at various levels within a part or the 
entire healthcare organization, public health system, or nationally. 

 Interoperability is the ability of different information systems, devices and applications 
(‘systems’) to access, exchange, integrate and cooperatively use data in a coordinated manner, 
within and across organizational, regional and national boundaries, to provide timely and 
seamless portability of information and optimize the health of individuals and populations 
globally [14].

 The Healthcare Information and Management Society (HIMSS), one of the largest 
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informatics societies, defines four different levels of interoperability.

HIMMS Four Levels of Interoperability [14]:

1. Foundational (Level 1) – establishes the inter-connectivity requirements needed for one 
system or application to securely communicate data to and receive data from another.

2. Structural (Level 2) – defines the format, syntax, and organization of data exchange 
including at the data field level for interpretation.

3. Semantic (Level 3) – provides for common underlying models and codification of the data 
including the use of data elements with standardized definitions from publicly available value 
sets and coding vocabularies, providing shared understanding and meaning to the user.

4. “New” Organizational (Level 4) – includes governance, policy, social, legal and 
organizational considerations to facilitate the secure, seamless and timely communication and 
use of data both within and between organizations, entities and individuals. These components 
enable shared consent, trust and integrated end-user processes and workflows.

 An essential component of achieving interoperability is having standards at the various 
levels of interoperability. For instance, to achieve semantic interoperability, HIT systems 
commonly use HL7, which is an international text standard for clinical and text data. 

3.6. Knowledge

 Knowledge is often obtained by accumulation and validation of information, generally 
accepted to be true. 

 The exponential growth of medical literature has created a massive amount of medical 
knowledge. Medical knowledge guides our individual clinical behavior, informs our practice 
guidelines, creates new inferences for future research studies, and helps educate the next 
generation of physicians and Cardiologists. There are several relevant fields of study that directly 
work on knowledge and its management. Two important ones to mention are epistemology 
that works on the theories of knowledge, and knowledge engineering is a sub discipline of AI, 
which tries to create technological systems to reflect expert decision making. Knowledge is an 
important ingredient to optimal clinical decision making. 

 Prior to the information age, memorization of medical knowledge was a necessity for 
practicing physicians. This made sense in an environment where medical knowledge doubling 
rate was decades or longer, and where the accessibility of medical knowledge often required 
going to the nearest library – not ideal when needing to make quick life and death decision 
about a patient’s clinical management. Today, a clinician’s smartphone can carry more medical 
knowledge than any physical medical library could accommodate. Furthermore, the internet 
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has readily accessible resources like Ask Mayo Expert, Up-To-Date, etc. Physicians have 
access to quick guidelines and reviews about numerous pathologies. However, medical training 
continues to be antiquated in its approach to medical practice. Medical students, residents and 
fellows are still often graded on their memorization of a list of facts rather than their ability to 
quickly acquire up-to-date medical knowledge and use it correctly.

3.7. Clinical Decision Support 

 As the medical knowledge base grows the use of technology can help in clinical decision 
making. Clinical decision support is a method to resolve this challenge. Robert Greenes, an 
author of the popular book Clinical Decision Support, defines computer based CDS as “the use 
of information and communication technologies to bring relevant knowledge to bear on the 
health care and well-being of a patient [15].” 

 Figure 5 shows a broad conceptual framework for steps of knowledge creation, 
knowledge extraction, knowledge storage, and knowledge deployment. Each of these steps 
are important to consider when developing a CDS tool.  

Figure 5: CDS Overview- Knowledge Creation to Deployment with HIT.

 CDS is now becoming widely used in EHRs around the country, especially in large 
academic centers. One of the most frequent uses is medication alerts where a physician is 
alerted at the time of ordering a medication that is marked as an allergy or contraindicated due 
to drug-drug interactions. However, specialty practices such as Cardiology are making CDS 
tools for their practice and healthcare organization. For instance, CDS tool that help identify 
acute coronary syndrome in ED patients or the use of CDS tool to help guide management in 
a known ACS case based on risk factors [15,17-19].

 As knowledge, creation continues at a remarkable pace, the goal for evidence-based 
care to improve the value of healthcare delivery, and the rise of machine learning makes CDS 
tools increasingly powerful. 



10

An eBook on Cardiology

3.8. Wisdom 

 Wisdom is characterized by the ability to use knowledge to make intelligent decisions. 
Intelligence and its definition, especially with the possibility of the age of AI, has become a 
debated topic. There is certainly a fear that AI will take over physicians’ jobs in the future. 
The jobs that are most affected by AI and other technology, typically have a high degree of 
automation. Providers are responsible for the lives of their patients, and work in field requiring 
high level of expertise. Therefore, it is unlikely that AI will replacing physicians see Table 1. 
However, a more likely reality is that AI will support and improve efficiency of the daily work 
done by physicians.

Table 1: Probability of automation based on task.

Cognitive Task Level of Automation 

Skill-based High probability of automation with the assumption reliable feedback loop and error 
feedback 

Rule-based Moderate probability of automation. If rules are well established and validated.

Knowledge-based Low probability of complete automation, but possible contribution of automation to 
help synthesize data

Expertise No probability of currently being able replace humans, but possible support in tasks.

 Judea Pearl who won the Turning Award (prestigious award for contribution in 
computer field) for his work in AI describes what goes into intelligence. Although there have 
been tremendous advances in machine learning, these algorithms are still mostly used for 
association. Judea Pearl describes a ladder of intelligence with three rungs (Figure 6). The 
first rung is the ability to make associations between objects that have correlation to some 
outcome of interest. All the advances and successes of machine learning to date are still on 
this fist rung, below the intelligence of human baby. The next rung of intelligence is starting to 
understand causal reasoning by performing/doing interventions on the surrounding world and 
watching the outcome. The top rung is imagination and explores the ability to project what-if 
scenarios with interventions or lack thereof to the surrounding environment– counterfactual. 
This level of intelligence is a defining human trait, and no machine or algorithm has come 
close to achieving this level of intelligence.

Figure 6: The Ladder of Causation by Judea Pearl 
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1. Artificial Intelligence and Machine Learning 

 In 1950 Alan Turing a famous British Mathematician postulated that computers could 
have similar intelligence to humans in the future. Many believe this marked the beginning of 
artificial intelligence (AI) as a field - defined by the pursuit of creating non-living intelligence. 
Over the decades, mathematicians, computer scientists, physicists and other fields of science 
have contributed to its growth. The evolution of AI, however, has not been linear. It has been 
characterized by incremental discoveries that would move the field forward and increase its 
hype, but then would be followed by “AI winters,” characterized by long periods of minimal 
gains.

 Today, AI is hyped as ever and has regained the public’s imagination, but the hype 
versus reality remains to be determined. During this period, AI has proliferated into consumer 
products. Smartphones and applications are using speech and facial recognition. AI has beat 
the best Jeopardy players and the world’s best Go player, in a five-game match. In healthcare, 
AI has achieved remarkable success. It performed at the level or better than radiologists 
and dermatologist in making diagnoses from chest x-rays and identifying a malignant mole, 
respectively. In Cardiology there has been a wave of AI uses and related publications. For 
example, a deep neural network (DNN) (type of machine learning algorithm, see below) 
outperformed most Cardiologist’s sensitivity at detecting ECG arrhythmias. (see Figure 7) 
[20].  

Figure 7: Cardiologist vs DNN in sensitivity of detecting arrhythmia on ECG.

 The goal of the following section is to provide a summary of the major concepts. The 
concepts described have, in and of themselves, entire books dedicated to them. Here, we 
will focus on concepts that help with practical considerations when using ML in healthcare 
applications and the approach to interpreting medical literature where ML/AI was used. 

Artificial Intelligence Versus Machine Learning

 The terms AI and ML often are used interchangeably, but ML is a subfield of the 
broader concept of AI. ML algorithms learn from data - giving it both its name and defining 
characteristic. AI is focused on the concept of non-living intelligence, learning from data being 
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one aspect. 

3.9. Machine Learning Versus Statistics

 The machine learning algorithms have a basis in statistics. The differentiating feature is 
the objective of ML to improve with iterations of examples from a dataset. A strong foundation 
in statistics is valuable in learning ML.

4. Machine Learning in Research

 The paradigm in medical research has been to use deductive reasoning to guide 
epidemiologic study design and inference testing with traditional statistical techniques. 
Deductive reasoning starts with a hypothesis founded on theory from concepts that already 
exist.

 ML research often starts with inductive reasoning that begins with observations and 
pattern recognition and then builds theories. Inductive reasoning has been used less commonly 
in medical research. Before data was widely abundant, correlative patterns in a smaller dataset 
were often noise and not signal. Moreover, without advanced analytic techniques, like machine 
learning, isolating the signal was difficult. The lack of causal inferencing has been another 
reason for its lack of acceptance.

 The factors often limiting inductive reasoning are changing with the availability of big 
data, improved computer power and speed, and improved ML analytic techniques.  Therefore, 
the future will see a large paradigm shift in medical research. This emphasizes the importance 
to start training Cardiologists on how to interpret and conduct studies using inductive reasoning 
as the basis [8,21]. 

4.1. Machine learning basics:

4.2. ML algorithms learn from data, but what does learn in this context mean?

 Imagine what goes into your own ability to learn from experience. What are the 
elements required? There are tasks T (objectives) that you’re accomplishing with some degree 
of success, termed performance P, and there are multiple examples that build your experience 
(E) at performing these tasks. If your performance P of doing tasks T improves through your 
experience E then you have learned – right? The saying practice (E) makes perfect (improved 
P at T) has a lot meaning in ML/AI. We will revisit these elements of learning later in this 
section.

 Here are few terms to add into our ML lexicon: examples and features. First experience 
E from above was made up of many examples of doing a task T. Each example has features, 
which the ML algorithm will use to learn from. An analogy from real life would help explain 
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the concept better. In an excel spreadsheet, each example would be represented by a row. The 
features would be columns. Researchers developed a ML acute coronary syndrome (ACS) 
mortality prediction model. The goal was to predict mortality in patients presenting to the ED 
with ACS. Examples would represent each patient arriving to the ED with ACS. Features in 
this case would be variables like smoking status, cholesterol, prior MI, etc.  

4.3. Everything in ML starts with data 

 The following datasets are important to know in ML algorithm development:

1. Development dataset: the data selected at the beginning of the process to develop the ML 
algorithm. This will be further divided into the training and tuning data set.

2. Training dataset: Originating from the development dataset, this dataset will be used for 
developing the ML algorithm through modification of parameters over iteration of examples.

3. Tuning dataset: This dataset also originates from the development dataset and is used to 
modify hyper parameters (see concepts of ML algorithm development below) for improvement 
in the model.

4. Validation dataset: This dataset is used to validate the model developed from the development 
dataset.

4.4. Broad Categories of Learning

 There are three broad categories of ML algorithms: 1) supervised learning, 2) unsupervised 
learning, and 3) reinforcement learning. 

4.5. Supervised Learning

 Supervised learning algorithms experience numerous features of a dataset (shared with 
unsupervised learning as well). The difference between unsupervised and supervised learning 
is that in supervised learning each example is linked to a label [22].

 In the ML ACS mortality prediction model above. In supervised learning each example 
or patient arriving to the ED with ACS would then be associated with a label (outcome) 
mortality or not in specified timeframe. Through experience (E) in many examples of patients 
the ML algorithm would start to learn which features predicted mortality, and therefore its 
performance (P) in the prediction of task (T) would improve.

4.6. Unsupervised Learning

 Unsupervised learning, as mentioned above, experiences (E) a dataset but is not linked 
to a label. Instead it often will analyze the probability distribution between features. One 
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common use is to cluster the examples based on unique attributes of the feature’s probability 
distribution thus providing insight into these features. The insight developed can be used to 
develop clinical phenotypes.

 Unsupervised learning has had less application in clinical medicine to date but promises 
to be important in future discovery of novel relationships between clinical variables not yet 
discovered. 

4.7. Reinforcement Learning

 Reinforcement learning learns from its environment by interacting with it and through 
feedback loops develops its experience. Reinforcement learning tries to elevate ML to the 
second rung, a baby’s intelligence (Figure 6). It has little application in healthcare, yet, and 
we will not be discussed further in this chapter.

 Majority applications of ML in healthcare occur on supervised learning and the remaining 
chapter will only focus on this aspect of ML. 

4.8. Revisiting learning: Tasks, Experience, and Performance

Task (T)

 Learning is not directly associated with doing a task. In the ACS mortality prediction 
model the task was prediction of mortality. If after experience (E) the performance (P) has not 
changed at this task (T) then learning did not occur. 

 There are a number of tasks (T) supervised ML algorithms can perform as shown in 
Table 2.

Table 2: Examples of tasks for ML

Task (T) Comments

Classification

The algorithm selects a category from a set of possibilities based on inputs.
Examples in Cardiology literature: Reading ECGs and categorizing based arrhythmia 
[20], categorizing patients into coronary heart disease versus not based on number of clinical 
features[23], categorizing restrictive versus constrictive pericarditis based on ECHO findings 
[24]

Regression Regression produces a numerical value 

Structured output 
(example of 
classification)

Involves a task where data is unstructured and annotates it for mapping into an organization 
and thus structuring the data. This can be an important tool when managing a large dataset.

Forecasting 
Using time-series data as features for predicting an outcome. 
Examples in Cardiology literature: Predicting the risk of heart failure with EHR sequential 
data modeling [25]
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Performance (P)

 Performance (P) is often measured as the accuracy or conversely the error rate. Other 
measures are used depending on the application, but will not be discussed here.

Experience (E)

 A general principle is ML algorithms will have improved performance with more 
experience or data. There is no rule-of-thumb on the right amount of data because it depends 
on the context of its use and the characteristics of the data features.

4.9. Concepts about machine learning algorithm development

 Machine learning has several models or algorithm it can use. The best choice often 
depends on the data and comparison between different models. To understand these essential 
principles, we will use the simplest ML algorithm and one in healthcare we are most familiar 
with, linear regression.

y ̂=w^T x+b

 The purpose of the regression model above will be to take a vector x with several input 
variables and predict a scalar value y ̂. The value y ̂ represents the prediction from the model 
of the actual y. Each example will have a number of features that will impact the outcome. To 
adjust for these features based on their importance to the prediction, we weight their importance 
on the prediction with a set of weights  w^T. The entire set of weights can be considered its 
parameters, which is a key concept in ML. As can be seen from this simple example these 
parameters would change as the algorithm learns which features improve performance. More 
sophisticated algorithms can also have hyper parameters, which are fixed and do not change 
with experience (E) but may help improve performance. Lastly, b is a bias term which just 
reflects the intercept (unlike the bias in statistics). 

 For the machine learning algorithm to learn, it will need a performance measure. The 
performance measure in this case would be mean squared error. This function optimizes the 
weights to improve performance (P), and is the key step in learning. 

4.10. Generalization

 Another important concept for either supervised or unsupervised ML models is 
generalization - which is how well ML algorithms respond to new data outside of the training 
environment which is the ultimate goal of any ML algorithm. In the training dataset, the 
training error is measured and the test error is measured afterwards (sometimes referred to as 
generalization error). The test error provides external validity of the ML model. 
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 Several ways to avoid overfitting (aka regularization):

Reducing parameters and dimensionality reduction • 

Data augmentation: Modifying input data to achieve optimal size• 

Parameter regularization: ways to avoid parameters increasing in size• 

4.13. Machine Learning Models 

 There are hundreds of models. No model is better than another. Instead it is important to 

The goal of training the data is to make training error small, and subsequently the gap between 
the training error and gap error is also small. This can be realized by appropriate fitting of the 
model. 

4.11. ML model fitting

 The ML models fit the data based on several factors. Fitting involves graphical 
mathematical models (Figure 8). Over-or under-fitting are one of the biggest issues facing 
the effectiveness of a ML algorithm. Fitting the model in training will then determine its 
generalization during testing on data outside of the training dataset– remember generalization 
is the ultimate goal of ML models because it reflects the performance on applied data.

 Under fitting a model will cause high training error because it does not fit closely to the 
training data; however this could mean better performance than an over fitted model when it 
comes to data outside the environment. Overfitting a model, contrarily, will cause low training 
error but oftentimes results in poor performance when used outside of the training dataset. 
However, if the training dataset closely reflects the data where the ML model will be applied, a 
highly fitted models performs well. However, generally the best fitted model is often between 
a low-or-highly fitted model.  

Figure 8: Modeling fitting: The graphs on row 1 are the results of validity testing the training data (represented by blue 
dots) and show the difference of between under, appropriate, and overfitted models. In row 2 the graphs represent how 
the selected models in row 1 perform with new data outside the training model (red dots).
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Figure 9: Machine learning model development workflow

understand the data to define the most appropriate model suited for the purpose. 

4.14. Artificial Neural Networks

 The development of artificial neural networks (ANN) has proven to be a large success 
in ML. ANN were designed from the concept of human neurons; they resemble their function 
more than their biology. In general, ANN have an input layer, which are connected to an 
output layer sometimes through a hidden layer. Deep neural networks (DNN), are part of 
deep learning and a subcategory of ANN and has had some the most profound results. In this 
model there is a substantial hidden layer (typically greater than two hidden layers) between 
the input and output layers, where abstraction of features of the input layer occur. Each layer 
selects more complex features of the input variables, and place mathematical parameters on 
information from previous layers.  The final layer, or output layer, then makes a prediction 
based on the patterns in features within each hidden layer.

4.15. Common Basic Workflow in developing a predictive ML algorithm 

1. Data pre-processing (Figure 9)

Feature selection and extraction• 

Identify and deal with missing data• 

Data normalization (example: put data in same magnitude of measurement scale)• 

Noise reduction• 

2. Model selection

3. Development of ML algorithm

5. Validation

 There are several ways of evaluating the internal validation. The test error rate and 
ROC curves similar to other predictive models are analyzed.  The measures are then compared 
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to a reference standard. Understanding how the methods of creating a reference standard is 
important because this can have a large impact on the results of validation studies.

6. Summary

 To summarize, the accumulation and integration of data from multiple streams within EHR 
and the widespread use of digital technology like smartwatches has resulted in development of 
big data. The development of novel data mining techniques and advances in ML methodology 
open a plethora of its applications both in the field of Cardiology and in Medicine at large. The 
applications of ML and AI will continue penetrating and expanding within clinical practice. It 
is quintessential for Cardiologists to at least have an understanding of the basic principles of 
informatics to continue advancing the frontier of medical research and practice of evidence-
based medicine.
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