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Chapter 2

Nanotechnology 
and its Applications

1. Structure and Properties of Nanolayered Silicates

	 As a type of nanolayered silicates, montmorillonite (MMT) belongs to monoclinic system, 
which is generally irregular flake. Its color is white with light gray, sometimes with light blue 
or light red, and the luster is dim. It has strong adsorption capacity and ion exchange capacity, 
as well as high colloid, plasticity and adhesion. Its Mohs hardness is 2 ~ 2.5, specific gravity 
is 2 ~ 2.7g/cm3, and bulk density is 1 ~ 1.1g/ml. Its chemical composition is Na0.7(Al3.3 Mg0.7)
Si8O20(OH)4 ·nH2O.

Figure 1: Structural diagram of MMT (2:1 nanolayered silicate).

	 Natural MMT is a lamellar structure, which belongs to 2:1 layered silicate. The lamellar 
thickness is about 1 nm, and the length and width is about 100 nm. The molecular structure 
contains three sublayers, and an aluminum oxygen octahedral sublayer is added between the 
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two silicon oxygen tetrahedral sublayers. The sublayers are covalently connected by sharing 
oxygen atoms. The close packing structure of tetrahedron and octahedron makes it have a highly 
ordered lattice arrangement. MMT has high stiffness and is not easy to slip between layers. 
The interlayer contains hydrated Na+, Ca2+, etc., and they can exchange inorganic cations. 
If it is used as a reinforcing agent for organic substances such as polymers, ion exchange is 
required. Organic cations (i.e. intercalation agents) are usually used to change the polarity of 
MMT lamellae and reduce the surface energy of silicate lamellae, so as to increase the affinity 
between the two phases [1-3].

Figure 2: Characterization of MMT (A) SEM, (B) TEM, (C) FTIR (a) before and (b) after organic modification, (D) 
XRD (a) before and (b) after organic modification.

Figure 3: Preparation process of pillared MMT.

	 Inorganic salt modification is carried out by adding one or more inorganic metal hydrate 
cations to exchange with exchangeable cations between MMT. These ions act as the role of 
balancing the negative charge on silica tetrahedron. At the same time, due to the action of 
interlayer solvent, MMT can be stripped and dispersed into thinner single crystals [13]. The 
salts used for MMT modification mainly include aluminum salt, magnesium salt, zinc salt, 
copper salt, etc. The preparation process of pillared MMT was shown in Fig.3. Cooper et al. 
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[14] modified the surface of MMT with polymerized Fe3+ and Al3+. In the study on the selective 
adsorption and adsorption capacity of Cd, Cu, Ni, Pb and Zn in water, it was found that the 
adsorption performance of MMT for sewage has been significantly improved, and the effect of 
modified MMT is significantly better than that of original one.

2.2. Organic Modification

	 MMT is hydrophilic and oleophobic due to a large number of inorganic ions between 
layers, which is not conducive to its dispersion in organic phase and adsorption of organic 
substances. When MMT is used in organic system, it must be organically modified, that is, 
organic cations are used to replace the inorganic cations in MMT (generally sodium MMT). 
This is to change the form of interlayer ions in MMT crystal layer, and thus to make its surface 
hydrophobic and have good expansion performance. The organic synthesis of MMT is one of 
the key steps for the preparation of nanocomposites [15-18]. Through organic modification, 
the interfacial polarity and chemical microenvironment of inorganic materials are improved, 
and the affinity between two phases is increased. The hydrophilicity of the surface of MMT is 
not conducive to its dispersion in the organic phase and adsorption of organic substances, and 
it often needs to be organically modified to make the surface of MMT hydrophobic. Common 
organic modifiers mainly include amino acids, alkyl ammonium salts, polymer monomers 
and coupling agents [19, 20]. This organic modification is only carried out between crystal 
layers to increase the interlayer domain and does not affect the structure of MMT, as shown in 
(Figure 4). 

Figure 4: The ion exchange diagram between MMT interlayers.

2.2.1. Amino Acid Modification

	 Amino acid molecules contain an amino group (-NH2) and a carboxylic acid group 
(-COOH). Under the condition of acidic medium, a proton in the carboxylic acid group of the 
amino acid molecule is transferred to the amino group to form an ammonium ion (NH3

+). This 
newly formed ammonium ion enables the amino acid to have the ability of cation exchange 
with the cations between the MMT layers. After the cation exchange between ammonium ions 
in amino acids and MMT lamellae, organic MMT with organic amino acids can be prepared 
[21-25]. Liu et al. [26] put amino acids or their methyl esters and long-chain cetyltrimethyl 
ammonium bromide between the layers of MMT through exchange method to realize the 



4

Nanotechnology and its Applications

functionalization of MMT, and was used to load metallocene catalysts and dilute the original 
polymerization. Zhou et al. [27] used a new gemini cationic surfactant containing amino acids 
to modify the surface of MMT through particle exchange reaction, and used TGA to study 
the thermal stability of modified MMT, as shown in (Figure 5). (Figure 5a) showed that 
the residual amount of OMMT after modification was less than that of MMT, indicating that 
the decomposition amount of OMMT was more than that of MMT. Fig.5b showed that the 
decomposition temperature of MMT was about 640℃, while that of OMMT was lower, which 
may be due to the thermal decomposition of the modified organic components.

Figure 5: TGA (a) and DTG (b) of MMT and OMMT.

2.2.2. Coupling agent modification	

	 The surface active organic functional groups are used for chemical adsorption or reaction 
with the surface of MMT, so as to cover the particle surface with surfactants (usually silane, 
titanate coupling agent, stearic acid, silicone, etc.) to increase its wettability. Zhao et al. [28] 
modified MMT with chlorosilane, stirred and refluxed chlorosilane and MMT, washed and 
filtered with acetone, dried under vacuum, and finally obtained silylated OMMT after grinding. 
The results showed that there was no obvious difference in the dispersion results regardless 
of the amount of silane intercalated between the layers of MMT. It also showed that under the 
experimental conditions, the main factors affecting the dispersion were the interaction between 
particles and layers together with the hydrophilicity and hydrophobicity of MMT. 

2.2.3. Organic quaternary ammonium salt modification

	 This method is related to long carbon alkyl quaternary ammonium salt. The organic 
cations of it can enter the MMT layer through ion exchange reaction. The surface of the 
nanolayer is covered with the alkyl long carbon chains, and thus its surface changes from 
hydrophilicity to lipophilicity, increasing the affinity between organic MMT and polymers. 
Meanwhile, the longer alkyl molecular chains are arranged in a certain way between the 
layers, which can increase the layer spacing [29-31]. This is conducive to the intercalation 
of polymeric monomers or macromolecules into the layers. Yoon et al. [32] preliminarily 
modified MMT (M0) with mononuclear octadecylamine to obtain S1, then further modified 
it with polyoxyethylene octadecylamine to obtain S2, and finally treated it with octadecyl 
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Figure 6: XRD diffraction patterns of MMT and OMMT. 

2.2.4. Monomers modification

	 The monomers of polymer can be directly intercalated into the interlayer of MMT as 
modifier, and then the nanocomposites were obtained by in-situ addition polymerization. 
The process has low cost, high efficiency and good development prospects, but there are not 
many monomers meeting this structure [33-37]. At present, aniline is more studied in this 
kind of modifier, and the prepared hybrid material has high conductivity and thermal stability 
[38]. Zhao et al. [39] modified Na+-MMT with amino polyhedral oligomeric silsesquioxane 
(POSS). As shown in Fig.7, the interlayer spacing of the modified MMT increased obviously, 
which was conducive to the next step of forming larger interlayer space and corresponding 
composites with polymers. In addition, it can significantly improve its heat resistance.

Figure 7: Schematic preparation diagram of POSS modified MMT.

dimethyl ammonium chloride to obtain modified OMMT (S3). This process was carried out 
under the protection of nitrogen. The modification results were analyzed by XRD diffraction, 
as shown in Fig.6. It can be seen from Fig.6 that the diffraction angles of S1, S2 and S3 
obtained in the modification process were smaller than those of M0, and the reflected layer 
spacing was larger than that of MMT, realizing the intercalation effect.
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2.2.5. Dendrimer modification

	 Dendrimer is a linear polymer with dendron on each repeating unit. It has been applied 
in biomedical fields from simple drug delivery carriers to complex medical imaging, including 
nano biosensors and nano catalysts. It has precise nano structure, and its synthesis methods 
include divergence method and convergence method. It has the following characteristics: 
First, a large number of end groups are enriched on the surface; Second, it is highly branched 
and contains a large number of holes and cavities. Thus, it is difficult to crystallize and has 
no winding chains; Third, the proportion of molecular composition is controllable. Special 
synthetic methods, unique molecular structure and excellent physical and chemical properties 
provide an opportunity for the application of dendrimers in many fields [40-43]. Zhao and 
Wang [44] used quaternary phosphonium salt THPC to modify inorganic MMT, and organic 
MMT was obtained. Results showed that THPC can effectively intercalate MMT in acid 
conditions (pH=1.46), and the interlayer spacing was increased from 1.43 nm to 1.58 nm. 
Then, they prepared dendritic organoclay flame retardant by in-situ polymerization. The layer 
spacing of DOMMT was 2.1 nm, which was 47% higher than that of origin MMT, and the 
thermal stability was also improved.

Figure 8: Schematic preparation diagram of dendrimer modified MMT.

3. Preparation Technology of Nanolayered Silicates Reinforced Rubber Composites

	 The preparation methods of rubber/organic MMT (OMMT) nanocomposites mainly 
include monomer intercalation in situ polymerization, macromolecule direct intercalation 
and small molecule intercalation with macromolecules. Among them, direct intercalation of 
macromolecules includes rubber solution intercalation, liquid rubber intercalation, rubber 
latex intercalation and rubber melt intercalation.

3.1. Monomer intercalation in situ polymerization method

Monomer intercalation in-situ polymerization means that the rubber monomer is first inserted 
into the interlayer of MMT (generally, the monomer and MMT are dissolved in a solvent 
respectively). And then the monomer is polymerized in situ under external conditions, such as 
oxidant, light, heat, initiator or electron. The large amount of heat released during polymerization 
is used to overcome the Coulomb force between MMT sheets and expand 
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the MMT sheets, so that the nanoscale sheets are combined with the rubber matrix in the 
form of chemical bond to obtain nanocomposites. According to the different polymerization 
mechanism of monomers, it can be divided into addition polymerization and polycondensation. 
The rubber nanocomposites prepared by monomer intercalation in-situ polymerization have 
uniform dispersion of MMT layers and strong adhesion between MMT and rubber interface. 
They belong to chemical bonding and have excellent properties. However, the polymerization 
reaction is complex, the reaction conditions are harsh, and it is not easy to control and it is 
difficult to realize industrial production [45-48].

3.2. Solution intercalation method

	 The rubber solution intercalation method is to organically modify the surface of MMT, 
disperse it in a suitable solvent, and then add it into the rubber solution. After stirring and 
removing the solvent, rubber/OMMT nanocomposites can be obtained [49-53]. This method 
has the advantages of simple process, physical interaction between MMT and rubber, and 
endows the composites with excellent mechabnical properties. However, suitable solvents must 
be found for different rubbers, and a large number of solvents are difficult to recover, which 
is unfavorable to the environment and causes high cost. Gu et al. [54] prepared polybutadiene 
rubber/OMMT nanocomposites by solution intercalation method, and the structure of the 
composites was analyzed by transmission electron microscope and X-ray diffractometer, and 
their physical, mechanical and thermal properties were studied. Results showed that these 
nanocomposites owned better tensile performance and thermal stability.

Figure 9: Schematic preparation diagram of rubber nanocomposites by monomer intercalation in-situ polymerization 
method.

3.3. Liquid intercalation method

	 Intercalation of liquid rubber to prepare rubber nanocomposites is a novel method. Low 
viscosity of liquid rubber is a favorable condition for the nano dispersion of intercalation 
materials. The preparation process of this method is relatively simple. The interface of the 
composite belongs to chemical bonding, with strong adhesion and excellent material properties. 
However, the type of liquid rubber is limited, the price is high and its own performance is poor. 
It usually has practical value to be used together with other rubber. Therefore, the application 
of liquid rubber intercalation method is limited [55-57].



8

Nanotechnology and its Applications

Figure 11: Schematic diagram of preparation of rubber nanocomposites by rubber melt intercalation method.

Figure 10: Schematic preparation diagram of rubber nanocomposites by solution intercalation method.

3.4. Emulsion intercalation method

	 The principle of emulsion intercalation is to isolate and intercalate latex particles and 
MMT in aqueous phase by using the hydrophilic characteristics of MMT. After the flocculation, 
the dispersion of MMT in the aqueous phase is solidified in the polymer matrix, and thus the 
composite material is prepared. The MMT and water suspension were mixed with rubber 
latex at a strong stirring to form a homogeneous mixture. After a period of time, the coagulant 
was added to flocculate, then the flocculant was dehydrated and dried to prepare rubber/
MMT nanocomposite [58-60]. Since most rubber has their own emulsion form and has no 
special requirements for rubber latex, the technology is simple, easy to control, and low in 
cost. Moreover, the nanocomposite has excellent properties, so it is expected to be the first 
method to realize rubber/MMT nanocomposites in industrial production. Gu and Hong [61-
63] prepared styrene butadiene rubber (SBR)/MMT nanocomposites by emulsion intercalation 
method.

3.5. Melt intercalation method

	 The melt intercalation method is to heat the organically modified MMT and rubber 
to the molten state, and directly insert them into the interlayer under the action of static or 
shear force to prepare polymer matrix nanocomposites. This technology is simple, easy to 
control and easy to realize industrial production. However, the high melt viscosity is not 
conducive to intercalation, the dispersion effect is not ideal, and the performance improvement 
of the nanocomposites is not obvious. If strong intercalation driving force can be obtained 
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4. Conclusions

	 Facing the traditional situation that carbon black and white carbon black are dominant 
in the reinforcement of rubber materials, developing new nano reinforcement agents with low 
price to obtain the best reinforcement is an important research direction of rubber industry. 
Due to the special lamellar structure of MMT and its nano size effect, the interfacial force 
of MMT in the rubber matrix is strong. To improve the quality of MMT and better meet the 
application requirements, it is necessary to modify the surface of MMT. The modification 
methods include inorganic modification, organic modification and organic-inorganic 
composite modification. Rubber/organic MMT nanocomposites have special structure and 
excellent properties, showing attractive application prospects. There are many methods for 
developing special and functional rubber nanocomposites, such as monomer intercalation 
in situ polymerization, solution intercalation and melt intercalation methods, and so on. The 
new rubber nanocomposites with high performance and multi-function can be designed and 
produced according to the requirements and they have good application prospects. 
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