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Abstract

The shortage of fossil fuel resources and the dramatic increase in 
population have raised many concerns about fuel supply in the years 
ahead. Researchers are now focusing on renewable fuels, and biodiesel 
is one of those renewables. Four generations of biodiesel have been 
reported today and many studies have been done to optimize and 
enhance their performance. The present review article examines the 
physical and chemical properties of three generations of biodiesel. It 
was observed that the physical and chemical properties of the biodiesel 
vary based on the feed stocks and have a significant effect on the 
dynamic characteristics of emission level and performance of engine. 
All properties have the highest and lowest ranges for each feed. All 
the oils that have been studied for three generations to date have been 
fully reported, and these properties have been studied and compared 
for each of the three generations.
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1. Introduction

  policies and dramatic fuel price changes in fuel-producing countries have caused many 
crises in the world. Lack of adequate resources and fossil fuel contamination in the world are 
other causes of global energy issues. (Figure 1) shows the increase of the demanding for the 
crude oil and the price changes in the world. These reasons have made the need for alternative 
fuel in the world completely necessary. Nowadays, biofuels have attracted a lot of attention 
as an alternative to fossil fuels [1-5]. Biofuels are included several advantages and the most 
important of them are related to the environmental benefits. Biodiesel can diminish emissions 
that cause environmental difficulties such as acid rain and global warming. Also, health issues 
as a consequence of emissions exposure are significantly declined by the cleaner emissions of 
biodiesel [5, 6]. Biodiesel is the non-petroleum based diesel fuel. It is contained of the mono-
alkyl esters of the long-chain fatty acids derived from the renewable lipid sources [7-9]. Qual-
ity of biofuels is always dependent on many factors. Some of them are included the feedstock, 
fatty acid composition, production process, handling and storage, and postproduction param-
eters [10]. 

 The close similarities between the properties of biodiesel and diesel fuels make that 
biodiesel is a good alternative to diesel fuels. The viscosity of biodiesel is so close to the die-
sel fuel. The conversion of triglycerides into ethyl or methyl esters via the transesterification 
procedure diminishes the molecular weight and viscosity and rises the volatility gradually. 
The cetane number is around 50-60 for biodiesel and it’s higher than diesel fuels, however, the 
heating value of the diesel fuel is greater than biodiesel. The flashpoint and density of biodiesel 
are much higher than diesel fuels, while the cloud point for diesel fuels normally is better than 
biodiesel fuel. The sulfur compounds in petrodiesel provide much of the lubricity, however, 
Biodiesel comprises virtually no sulfur and this is frequently applied as the additive to ultra-
low-sulfur diesel (ULSD) fuel to help with lubrication [11-13]. 

Figure 1: World Bank: average crude oil prices (a) and daily demand for crude oil worldwide (b)

1.1. Biodiesel feedstocks

 The different types of feedstocks are used for the production of biodiesel. The choice of 
feedstocks relies on the economic aspects and availability of the concerned country. The major 
biodiesel feedstocks for different regions of the world are shown in (Figure 2). Four genera-
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Figure 2: Main biofuel producers by region

 The first generation of biodiesel is edible oils such as palm, soybeans, rapeseed, and 
sunflower oil. Some of the main advantages of the first generation of biodiesel are shown in 
Fig 3. However, the use of edible oil sources as biodiesel fuel has caused great concern in the 
world. These concerns include the possibility of food shortages in the world and rising food 
prices. This generation has also required arable land for the production and it creates serious 
ecological imbalances due to that countries start cutting down forests for plantation purposes. 
Therefore, the demand for biodiesel increases, it will cause severe damage to the environment 
and wildlife, due to the greater need for arable land and larger scale deforestation [3, 5].

 The second generation of biodiesel is non-edible oils. The mahua, jatropha, tobacco 
seed, jojoba oil are examples of second-generation biodiesel. This generation of biodiesel has 
many advantages, as shown in Fig 3. This generation also has some limitations for worldwide 
using. They may not be abundant enough to substitute transportation fuels. The performance 
of this generation has some restriction in cold temperatures [14]. 

 The third generation of biodiesel are included microalgae, animal fats, and waste cook-
ing oils. Some advantages of this generation are shown in (Figure 3) [3]. While, this generation 
requires huge amount of money for producing. According to research, the production of algae 
biofuel still requires a lot of work, mainly in the process of the oil extraction and low yields as 
well as it emits captured carbon dioxide. 

Figure 3: The advantages of the first, second, and third generation

tions of biodiesel fuels are applied worldwide. 



4

Advances in Biotechnology

 Limited information is available on fourth generation biodiesel. This has led to a com-
plete lack of scrutiny in this area. The Synthetic Genomics Company is applied genetic engi-
neering in production of biofuel. The genetically modified microorganisms is used to generate 
fuel directly from the carbon dioxide on the industrial scale. Furthermore, the fourth genera-
tion biofuels are gained from genetically modified crops in which they spend more carbon 
dioxide from the atmosphere than they release over combustion which makes it a carbon nega-
tive fuel.

1.2. The standards of biodiesel in the worldwide

 Several studies indicated that the physical properties of biodiesel have a huge effect 
on emission and combustion. The physical and chemical properties of the produced biodiesel 
must reach the standard value defined in the different regions for using. Some of the standards 
are included EN 14213/EN 14214, SANS 1935, JASO M360, ASTM D 6751, ANP 42, and IS 
15607 which used in EU, South Africa, Japan, U.S, Brazil, and India, respectively [10]. Some 
of the most important physical characteristics of biodiesel are included density, cetane number, 
kinematic viscosity, flash point, pour point and cloud point, calorific value, acid value, copper 
strip corrosion, ash content, sulfur content, glycerine, and oxidation stability [12, 15]. Stan-
dards set guidelines for testing the biodiesel fuels and propose the proper ranges for different 
physical and chemical properties of the fuel.

 There have been limited studies of the physical properties of biodiesel, but no reports to 
date have examined the physical properties of all three generations of biodiesel and comparing 
them to one another. A recent study has surveyed all the physical properties of three-genera-
tions of biodiesel from all oil sources which effect on the engine performance and emission 
features and also shown comparisons between them. The report also mentioned the lowest 
highest values of properties and shows the range for all biodiesels.

1.3. Characteristics and properties of three generations of biodiesel

 The important physical properties of three-generation biodiesels are summarized in Ta-
ble 1, 2, and 3. The Physicochemical property ranges are illustrated for pure biodiesels. All 
tables show the most important properties of biodiesels such as Density (kg/m^3), Kinematic 
Viscosity 40°C (mm^2/s), Calorific Value (Mj/Kg), Higher (gross) Heating Value (Mj/Kg), 
Lower (net) Heating Value (Mj/Kg), Acid Value (Neutralization number) (mg KOH/g), Flash 
Point (°C), Cetane Number, Oxidation Stability (h), Cloud Point (°C), and Pour Point (°C).

 There have been numerous reports on the types of vegetable oils and different amounts 
have been reported. About 69 first generation oils that have been the most researched are 
shown in (Table 1).
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2. Density

 Density is one of the most important factors in biodiesels. Most studies have reported 
temperatures of density between 15 and 40 ̊ C for all three generations because the temperature 
has a direct effect on density. Also, the free fatty acid content, molar mass, temperature, the 
water content can effect on the density of esters. The cetane number, viscosity, heating value, 
fuel performance, and the quality of combustion and atomization are strongly connected to the 
density. The density of diesel fuel is lower than biodiesels. The unit quantity of all reports is 
converted to kg/m^3.

 The maximum density of the first generation of biodiesel is reported for Castor biodiesel 
(at 20°C: around 917). Peanut sample also showed the highest density of about 992 and 884 
at 40 and 15°C. The minimum density of the biodiesel was stated for the Watermelon seed 
around 800 and 880.6 at 15 and 20°C.

 Patchouli and Tall biodiesels (second generation of biodiesel) could show the highest 
amount of density at 15 and 40°C around 922 and 922.1. The minimum of this generation was 
shown by the jojoba and jatropha at 40, 20 and 15°C (830, 865.7, and 874).

 Plastic pyrolysis and neem seed pyrolysis were shown the highest amount of density at 
15 and 40°C around 981 and 982. The majority of reports were done at 15 and 40°C, however, 
some reports were performed at 22, 17, and 25°C (Table 3). The lowest of the density for the 
third generation of biodiesels were shown by the heterotrophic microalgae at 15°C (778).

 Comparison between three generations of biodiesel shows that the highest of density 
was reported by Peanut biodiesel (first generation) and it was higher than second and third 
generation of biodiesel around 8 and 2 % and heterotrophic microalgae (third-generation) had 
the lowest density compared to other generation to approximately 3 and 8%. 

2.1. Viscosity

 The viscosity plays a leading role in the engine performance of biodiesels. It can affect 
the size of the particles, spray quality, starting the engine, the quality of the fuel-air mixture 
combustion, and penetration of the injected jet. Also, the viscosity can affect the lubricity. 
The amount viscosity has a limitation due to several reasons. The high viscosity makes the 
formation of too big drops, the increase of combustion chamber deposits, the increase of 
needed fuel pumping energy and wear of the pump and the injector elements. Also, the high 
viscosity causes operational issues at the low temperatures due to that the viscosity enhances 
with reducing the temperature. The low viscosity makes the inadequate penetration and the 
formation of the black smoke specific to combustion (during the absence of oxygen). Biodiesel 
is more polar compared to the diesel fuel, so, the viscosity of biodiesel is greater than diesel 
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fuel. Table 1, 2, and 3 show the viscosity of different feedstocks. The viscosity was measured 
at 40°C for three generations of biodiesel.

 The unit quantity of all reports is converted to mm^2/s.

 The maximum viscosity was reported for castor biodiesel around 14.4 for the first 
generation of biodiesel. Orange and watermelon seed biodiesels also showed the lowest amount 
of viscosity to roughly 1.04 and 1.05.

 The highest amount of viscosity for the second generation of biodiesel was shown by 
tung. It could show the viscosity around 7.84. The minimum of the viscosity was displayed by 
the jatropha and jojoba biodiesel. It was only around 2.35 and 2.2. 

 Spirulina platensis and neem seed pyrolysis were shown the highest amount of viscosity 
for the third generation of biodiesel. They were around 12.4 and 9.38. On the other hand, the 
lowest amount of viscosity was reported for plastic pyrolysis and it was about 1.91.

 The comparison between all generations could show that the maximum viscosity was 
shown by the castor and it was higher than the second and third generation of biodiesels to 
approximately 46 and 14%. The minimum of viscosity also reported by the first generation of 
biodiesels and it was 52 and 45% lower than the second and third generation of biodiesels.

2.2. Calorific Value

 The heating value or calorific value of the fuel is defined as the amount of energy 
released through the combustion of the unit value of the fuel. The unit quantity of all reports is 
converted to Mj/Kg. The upper heating value is gained while all products of the combustion are 
cooled down to the temperature before the water vapor combustion formed over combustion is 
condensed. The lower heating value is achieved by subtracting the latent heat of vaporization 
of the water vapor formed with the combustion from the upper heating value. Some of the 
reports indicated only to the calorific value and others referred to higher and lower heating 
values.

 The highest calorific value for the first generation was gained by the false flax biodiesel. 
It was from 45.05 to 46.15. The maximum higher heating value was shown by the cottonseed 
and it was about 48.18. Also, the greatest amount of the lower heating values reported by the 
coconut biodiesel (57.74). On the other hand, the minimum of calorific value was displayed 
by the thistle biodiesel (36.5). The lowest amount of the higher and lower heating values were 
gained by the canola and cottonseed biodiesels (25.11±0.29 and 36.89).

 Nerium oleander had the highest amount of calorific value between all second generations 
of the biodiesel (44.98) and the lowest heating value was shown by the nahor biodiesel [35]. 
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The higher heating value of the patchouli was greater than other second generations (44.18). 
The lowest higher heating value was shown by the green seed biodiesel and it was only around 
20.95±0.2.

 Spirulina platensis showed the maximum of calorific value between all third generations 
of biodiesel (45.63). The lowest calorific value was gained by waste cooking and it was around 
37.2. Lard biodiesel showed the highest higher heating values around 39.93 and neem seed 
pyrolysis was gained 20.8. The greatest lower heating value of the third generation of biodiesels 
was gained by the heterotrophic microalgae. It was around 44. The minimum lower heating 
value was reported sludge pyrolysis biodiesel (36.49).

 Comparison between all biodiesel generations could display that the spirulina platensis 
could achieve the maximum of calorific value and it was higher than nerium oleander and false 
flax to approximately 3 and 2%. Also, the highest higher heating value of the first generation 
of biodiesel (cottonseed) was higher than the second and third generation of biodiesel around 
9 and 18%. 

2.3. Acid Value

 The acidic value (acid number or neutralization number) in chemistry is the amount of 
mg of potassium hydroxide needed to neutralize one gram of a substance. An acidic number 
is a measure of the number of carboxylic acid groups in a compound, such as a fatty acid or 
a mixture of compounds. The upper amount of free fatty acid contributes to the elevated acid 
value which in turn causes severe corrosion in fuel supply lines of the engine. Besides, the 
acid value can be observed as the indication of the level of lubrication in fuel lines. The unit 
quantity of all reports is mg KOH/g.

 The castor biodiesel showed the highest acid value between all biodiesels of the first 
generation (3.9). The lowest acid value was displayed by the dika biodiesel and it was merely 
around 0.01.

 The maximum of acid value for the second generation of biodiesel was gained by the 
nahor (1.8) and the minimum of the acid value was shown by the stillingia (0.007).

 Plastic pyrolysis biodiesel from the third generation could display the highest amount of 
the acid value (41) and the lowest of acid value was gained by the waste frying palm (0.15).

 The third generation of the biodiesel could show the much higher acid value compared 
to other generations and the second generation of biodiesel could gain the minimum of the acid 
value compared to others. 

2.4. Flash Point 
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Flashpoint is the smallest temperature at which the fuel will ignite on the application of the 
ignition source under particular situations. Every liquid has a vapor pressure which is a function 
of its temperature. As the temperature rises, the vapor pressure increases. As the vapor pressure 
increases, the density of flammable liquid vapor increases. Therefore, temperature determines 
the amount of combustible liquid vapor in the air. Flashpoint measurement is done in two main 
ways: open cup and closed cup. The diesel fuel has a flashpoint around 50-65°C. Mostly, the 
flashpoint of the biodiesel is much higher than diesel fuel. The high flash point of biodiesel 
increases the security of fuel storage and transportation. The unit quantity of all reports is 
Celsius (centigrade).

 The palm biodiesel had the maximum of the flashpoint between all first generation of 
biodiesel (214.5°C). On the other hand, the minimum of the flashpoint was gained by the 
orange biodiesel (29°C) and it was lower than diesel fuel.

 Tung biodiesel (second generation of biodiesel) had the highest amount of the flashpoint 
around 197°C. However, the flashpoint of the nerium oleander was merely about 73°C.

 In the third generation of biodiesel, the beef tallow had the greatest flashpoint between 
all samples (around 210°C) while the plastic pyrolysis biodiesel was only around 13°C.

 The flashpoint of palm biodiesel was higher than tung and beef tallow around 8 and 3% 
and the plastic pyrolysis biodiesel was lower than the nerium oleander and orange biodiesel 
around 82 and 55%

2.5. Cetane Number

 The cetane number represents the delay between the start of the injection into the 
combustion chamber and the start of the fuel combustion. During this delay, the fuel accumulates 
and then ignites and the combustion explodes to produce a powerful effect. Reducing the delay 
time makes the combustion more uniform. The increase of the cetane number causes the quick 
ignition of the fuel and it makes less non-ignited fuels building up in the combustion chamber 
and also further complete fuel combustion. The low cetane number affect the incomplete 
combustion and it causes the enhancement of the exhaust emissions and extreme deposits in 
the engine. Normally, biodiesels have a higher cetane number due to greater oxygen content 
compared to the diesel fuel. 

 Papaya seed biodiesel (first generation) showed the highest amount of the cetane number 
compared to other biodiesels. The value of the cetane number was around 77.3. On the contrary, 
pomegranate seed biodiesel had the lowest cetane number around (26.1).

 Honesty biodiesel (second generation) displayed the highest amount of cetane number 
around 78.9±0.8 compared to other biodiesels in this generation, while tung biodiesel could 
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reach only around 39.

 Heterotrophic microalgae were shown the maximum of the cetane number in the third 
generation of biodiesel (almost 75). However, the cetane number of the fish biodiesel was 
around 51.

 The highest cetane number between all generations was shown by the honesty biodiesel 
and it was 3 and 6 % higher than the maximum of the other generations. Pomegranate seed 
biodiesel was shown the lowest amount of cetane number compared to other generations and 
it was 33 and 48% than the minimum of the other generations.

2.6. Oxidation Stability 

 The oxidation can affect the quality of the biodiesel over storage in contact with air. The 
storage stability is extremely important for the biodiesel and it indicates the ability of the fuel 
to stand chemical changes over the long term storage due to the connection with the oxygen 
from the air. The oxidation stability of biodiesel is subject to the number of bis-allylic sites 
in unsaturated compounds. The primitive oxidation is started by the radical formation at bis-
allylic sites and it forms peroxides. Then, the secondary oxidation generates the aldehydes, 
volatile organic compounds, and ketones with ruing the methyl ester which polymerizes to 
form waste sludge that can detriment the engine fuel injection system.

 This feature is not mentioned in all reports but Ben biodiesel had the highest in first-
generation biodiesel (26.2 h). On the contrary, the kenaf seed biodiesel had the lowest oxidation 
stability and it was around 0.35 h.

 The honesty biodiesel showed the maximum of the oxidation stability between all 
second generations of biodiesel (72 h). Sterculia foetida biodiesel displayed the minimum of 
the oxidation stability around 0.022 h.

 The waste mixed vegetable biodiesel presented the greatest amount of oxidation stability 
in the third generation of biodiesel about 14.12 h. However, the lowest of the oxidation stability 
was shown by the waste sunflower biodiesel (around 0.43 h). 

 Comparing between all generations, the honesty biodiesel was higher than the maximum 
of the first and third generation of biodiesel around 63 and 80%. Also, Sterculia foetida biodiesel 
(second generation of biodiesel) was lower than the minimum of the first and third generation 
of biodiesel to approximately 93 and 94%.

2.7. Cloud and Pour Point

 The minimum temperature at which a cloud of paraffin crystals appears inside the oil 
product is called the cloud point. At this temperature, the sample does not lose its fluidity and 



25

Advances in Biotechnology

is usable. The pour point of a hydrocarbon material is when it cools under certain conditions 
and is defined as the lowest temperature at which the hydrocarbon flows. This temperature is 
somewhat higher than the solidification point temperature. It is difficult to define precisely 
the pour or solidification point since the transition from the liquid phase to the solid phase is 
gradual. The unit quantity of all reports is Celsius (centigrade). 

 Ben biodiesel showed the highest could and pour point between all first generations 
of biodiesel (19°C). However, pumpkin seed had the minimum of could point around -18°C. 
Also, it had the lowest pour point between all biodiesel samples around -32°C. 

 The maximum of could and pour point was shown by the paradise biodiesel between the 
second generation of biodiesel (19 and 14.5°C). On the other hand, the minimum of could and 
pour point was reported by the patchouli biodiesel (-33°C).

 Euglena sanguinea biodiesel had the greatest could and pour point between all third 
generations of biodiesel and it was around 15 and 13°C. Waste fried oil and Spirulina showed 
the lowest cloud and pour point to roughly -8.3 and -18°C. 

 Paradise and ben biodiesel had the highest cloud point and it was 21% higher than Euglena 
sanguinea biodiesel. However, the ben biodiesel had the maximum pour point compared to 
the all second and third generation of biodiesel. It was 23 and 31% higher than the maximum 
of other generations. The patchouli biodiesel indicated the minimum of the cloud and pour 
point between all generations and it was lower than the lowest cloud and pour point of other 
generations between 4-74%.

3. Conclusion and Future Trend

 This review article attempts to provide comprehensive information on the physical 
properties of the majority of biodiesel used in all three generations and propose the best biodiesel 
concerning their physical properties. Biodiesel has many advantages over fossil fuels. One of 
the most important reasons for choosing biodiesel is its impact on the economy, environment 
and energy security in the world. Some of the most important benefits of biodiesel on the 
economy can be sustainability, job opportunities in the rural area, fuel diversity, more income 
taxes, development of agriculture, International competitiveness, decreasing the dependency 
on the imported petroleum, and improving investments in equipment and plant. Reducing 
air contamination, Biodegradability, Greenhouse gas reductions, better combustion efficiency, 
and carbon sequestration are some of the environmental impacts of biodiesel. One of the most 
important impacts of biodiesel on energy security can also be addressed renewability, ready 
availability, domestic distribution, supply reliability, domestic targets, and decreasing use of 
fossil fuels [296].
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Although biodiesel has superior properties over fossil fuels, choosing the right biodiesel has 
many difficulties. Choosing the right biodiesel depends on various factors including standards 
set in different countries, raw material production policies, weather conditions, engine biodiesel 
performance, initial production costs, and physical properties of biodiesel available in that 
region and so on. Therefore, choosing the best option among all the studied biofuels is almost 
impossible, and choosing the best feedstock has to take into account all the physical, chemical 
and product conditions, and so on.
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